
Conductivity and thermopower of 2D Bloch electrons in magnetic fields with electron-phonon

instabilities

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys.: Condens. Matter 7 339

(http://iopscience.iop.org/0953-8984/7/2/011)

Download details:

IP Address: 171.66.16.179

The article was downloaded on 13/05/2010 at 11:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/7/2
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys.: Condens. Matter 7 (1995) 339-344. Printed in the UK 
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Abstract The anomalies in the conductivity and lhermopower associated with the charge- 
density-wave instabilities.of 2~ Bloch electrons in magnetic fields are studied. It is assumed that 
the electrons are scattered elastically by randomly distributed impurities. The minimum of the 
cond~ctivity uLx and the maximum of the thermapower Q,, are split into several minima and 
maxima in the same way as the Van Hove singularities after the lattice distortion takes place. 
If the electron scattering is anisotropic (low angle) the results are essentially the same as in 
the case of isatropic scattering, with the only difference being that cxz is multiplied by a large 
factor. 

It has been shown in [l] that a system of twwdimensional electrons moving in a square 
lattice potential subject to a perpendicular magnetic field may undergo a periodic lattice 
distortion if the chemical potential p is close to a Van Hove singularity of the density of 
states (situated at p = 0). The distortion affects the spectrum by shifting the energy of 
the saddle points of the electron dispersion relation ~ ( k )  in opposite directions causing the 
originally coincident logarithmic peaks of the density of states to split apart. A topological 
transition of the Fermi surface will also take place since an initially closed (open) Fermi 
surface may become open (closed) in the vicinity of a saddle point when the energy of the 
latter decreases (increases). It is then expected that such a transition will be associated with 
anomalies in the behaviour of the transport coefficients, namely the conductivity and the 
thermopower, as the chemical potential is varied in the vicinity of the Van Hove singularities. 
This paper is addressed to the study of this phenomenon. 

It is assumed that the electrons are elastically scattered by randomly distributed 
inpurities. In the undistorted system the conductivity U,, has a minimum as /I + 0, 
uxx a l / log[p] ,  and the thermopower approaches a maximum Qxx E 1//1log I@[. In the 
distorted system the minima of us= and the maxima of Qxx are displaced to the positions 

 of the Van Hove singularities. Curiously, the functional dependence of these quantities on 
p is almost independent of whether the electron scattering by the impurities is assumed 
to be isotropic or anisotropic (low-angle scattering). As shown below, this is because the 
most important contribution for the conductivity comes from the electrons in the regions of 
the Fermi surface that are far from the saddle points. If the scattering is anisotropic, the 
inverse of the relaxation time (llr,,) in the kinetic (Boltzmann) equation still contains the 
contribution E log [pl (dominant as p + 0) coming from the saddle points, simply affected 
by a small factor because the probability of scattering of these electrons into the the vicinity 
of the saddle points is small. 
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In what follows, and just for the sake of definiteness, the magnetic field flux per unit 

In the framework of linear response theory the electrical current j is related to the 
cell will be set equal to half of the flux quantum (hcllel). 

electric field E and temperature gradient by the tensors U and p: 
j = uE C P V T  (1) 

with 
p=- -J  1 ( -af)(&-p)u(&)d& 

eT as 
where f ( ~ )  is the Fermi-Dirac distribution function, and U(&) denotes the conductivity 
tensor at zero temperature and chemical potential E [2].  The component Qxx of the 
thermoelectric tensor Q = (l/u)p is 

_--_ 
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Figure 1. The self-cansisIent Born approximation for the electron Green's function G = 
( E  - H + io)-'. The thick lines represent lhe Green's function averaged over impurily 
configurations. The impurity line (dashed) is associated with a factor of 2al2r:. 

As discussed in [I] ,  the Fermi surface of the electron system before the distortion takes 
place has two equal sheets and passes near the saddle points at which the dispersion relation 
may be written as 

with the effective masses m+ > 0 and m- < 0. Ak measures the departure from the saddle 
points. The density of states is then given by 

. .  

where W is of the order of the bandwidth. The transport coefficients will be calculated 
for values of the chemical potential at which the density of states is given by equation (4). 
Owing to the disorder, the logarithmic form of the density of states is destroyed for energies 
too close to zero. The validity of equation (4) can be studied by considering the imaginary 
part @"(E)) of the self-energy ( C ( E )  = C'(E)  + iZ"(E)) of an electron moving in a 
random potential. In the self-consistent Born approximation, expressed in figure 1, E'' is 
obtained from the relation [3] 

1 _-  
If:; - W Z k  (E-&&)-  C W ) ) Z + ( C " ( E ) ) 2  

( 5 )  

where the index n denotes the BIoch band, 1 is the magnetic length and ro is an energy 
characterizing the strength of disorder. If there was no periodic potential, equation (5) 
would predict a Landau level broadening of 4r0 [4]. Since our aim is to study the singular 
part of the density of states, with E inside a certain band, the sum over n may be discarded. 
Replacing the integral over IC by an integral over ener-7, equation (5) may be re written as 
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For weak enough disorder, Y ( E )  << W and the limits of integration can be extended to 
infinity. The result is 

Since 131 

equation (4) is recovered when C"(E)  << E or, equivalently, 

where W -z h2/l2= was used. Since we need the logarithm to be large, this may 
be viewed as a condition for weak disorder. Similarly, the density of states of the distorted 
system is 

as long as E stays sufficiently far from each of the peaks (the condition is the same as 
equation (6) with E replaced by E i U) [5]. 

The conductivity of Bloch electrons in a magnetic field~as given by the Kubo formula 
has two contributions U = Au, + us [3]. The 'intra-band' conductivity Au vanishes if 
W -+ 0 and diverges as r, --t 0. Since it involves only the matrix elements of the velocity 
operator between states in the same Bloch band, it is analogous to the conductivity of kloch 
electrons in the absence of magnetic field. The 'inter-band' conductivity U& involves matrix 
elements of the velocity operator between different bands. It remains finite as W + 0 and 
its diagonal component U& vanishes as ro + 0. An estimation of based on the Kubo 
formula shows that < Auxx if the condition (6) is satisfied and, for that reason, it may 
be neglected. 

The band conductivity may be obtained from the Boltzmann equation [6]: 

where d& denotes the line element along the Fermi surface, U, = a&(k)/ak, and the 
approximation af/a& = S(E - p )  was used. The relaxation time is given by 

where 8k.k' is the angle between the vectors k and k'. 
If the scattering is isotropic, the square of the matrix element of the random potential 

between k-states is a constant IVrc.kt1' = U' (with U' = 2Jcl'r;) and r,(lc) becomes 
essentially independent of k. Before the lattice distortion takes place we have 

Consequently, equation (8) gives 
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Using u2 = 2nZ2r; and W N f i 2 / 1 2 -  together with the condition (6) it is easy to 
see that 

As the chemical potential is swept through the Bloch bands the non-diagonal 
conductivity uxy interpolates smoothly between the quantized values that occur when the 
bands are completely filled [3, 71. Therefore, uzy is always of the order of e2/E and, in 
view of equation (121, we assume urx >> uxy. From equations (2 )  and (3) it is seen that 
e,, may be calculated from the Mott relation: 

f 

F V -V 
Figure 2. Conductivity with (n) and without ( b )  lattice distonion as a function of the chemical 
potential. U and -U denote lhe positions of the Van Hove singularities in (b) 

The result expressed in equation (1 1) may be understood from the following argument. 
The term IV&' contributes with a logarithmic singularity to the line integral in equation 
(8) in the regions close to the saddle points. But this singularity is suppressed by the term 
u?(k) which tends to zero in those regions. Then 

A%xx 0: ~2uEg(~~)rz (14) 

where uzZ is just the regular part of the density of states. The singular contribution to Aaxx 
comes from Tu, which is proportional to the inverse of the density of states. This reasoning 
was applied before to three-dimensional systems in the context of electronic topological 
(Lifshitz) transitions [8, 9, 10, 111. 

Considering the case of anisotropic (low-angle) scattering, we assume that large 
momentum transfers between the electrons and the inpurities have exponentially small 
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Figure 3. Thermopower with (a) and without (b) lattice distortion a% a function of the chemical 
poaential. 

probability. Such a situation arises, in particular, if the scattering centres are situated 
far from the plane of the electrons [12]. This means that the scattering matrix element in 
equation (9) can be put as IVk,k81z = u*exp(-plk - k'l): 

If k points towards a saddle point then 1 - cosBk,li' N for k' close to k and the 
exponential introduces a cut-off for the contribution of that saddle point. The factor 0: k, 

suppresses the singularity in IV~~EI- ' ,  so this saddle point does not contribute with any 
singular dependence on p. Nevertheless, the saddle points for which 0k.k = i n / 2  and 
0 k . t  = , A  still contribute with IGg(W/lpl) multiplied by a factor exp(? - p k ~ )  where kF 
is the Fermi momentum (the size of the Brillouin zone in this case). S~uch a contribution 
still exists when k is in the regions of the Brillouin zone far from any saddle points. Thus 
the transport relaxation time becomes exponentially larger since the scattering probability 
into the regions that give the dominant contribution (log(W/[@l)) is exponentially smaller. 
In view of the largeness of the logarithm, the conductivity is still given by equation (11) 
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multiplied by an exponentially large factor and the result in equation (13) remains, therefore, 
essentially unaffected. 

When the lattice distortion occurs, the calcdation of uzx and Qxx is extremely similar 
to what has been explained above, but the density of states is now given by equation (7). 
The results (11) and (13) are replaced by 

respectively. A qualitative plot of these results is shown in figures 2 and 3. It is seen that 
the minima of U,, and the maxima of Q, follow the Van Hove singularities as they are 
split by the lattice distortion. The effect of finite T in the Boltzmann equation (8) is just 
partially to smear out these features. It must be kept in mind that v depends on temperature 
as well as on p, attaining, for fixed TI its largest value at p = 0. In view of the collision 
broadening of the logarithmic singularities (in addition to the finite-temperature effects) both 
uxz and Qxx remain finite as p + 0. . 

In the case of arbitrary rational flux per unit cell, the initial logarithmic peak is split 
into various singularities by the lattice distortion. The denominator in equation (16) is then 
replaced by the sum of these singularities and the appropriate changes must be made in 
equation (17). 
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